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ABSTRACT: We study localization of bulk fermions on a string-like defect with the expo-
nentially decreasing warp factor in six dimensions with inclusion of U(1) gauge background
from the viewpoint of field theory, and give the conditions under which localized spin 1/2

and 3/2 fermions can be obtained.
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1. Introduction

Recently, there has been considerable activity in the study of models that involve new
extra dimensions. The possible existence of such dimensions got strong motivation from
theories that try to incorporate gravity and gauge interactions in a unique scheme, in a
reliable manner. The idea dates back to the 1920’s, to the works of Kaluza and Klein [I]
who tried to unify electromagnetism with Einstein gravity by assuming that the photon
originates from the fifth component of the metric.

Suggestions that extra dimensions may not be compact B[] or large [[i, § can pro-
vide new insights for a solution of gauge hierarchy problem [g], of cosmological constant
problem [B, f, {], and give new possibilities for model building. In ref. [fl], an alternative
scenario of the compactification has been put forward. This new idea is based on the
possibility that our world is a three brane embedded in a higher dimensional space-time
with non-factorizable warped geometry. In this scenario, we are free from the moduli sta-
bilization problem in the sense that the internal manifold is noncompact and does not need
to be compactified to the Planck scale any more, which is one of reasons why this new
compactification scenario has attracted so much attention. An important ingredient of
this scenario is that all the matter fields are thought of as confined to a 3-brane, whereas
gravity is free to propagate in the extra dimensions.

Following the brane world models proposed by Randall and Sundrum [f], a fair amount
of activity has been generated involving possible extensions and generalizations, among
which, co-dimension two models in six dimensions have been a topic of increasing inter-
est [L0-[3]. A useful review on topological defects in higher dimensional models and its
relation to braneworlds is available in [14]. Apart from model construction, the question of
solving the cosmological constant problem has been the primary issue addressed in several

articles [[§]. Other aspects such as cosmology, brane gravity [[[f], fermion families and



chirality [I7] etc. have been discussed by numerous authors. A list of some recent articles
on codimension two models is provided in [[L§].

It is well-known by now that in the braneworld scenario it is necessary to introduce
dynamics which can determine the location of the branes in the bulk. Ever since Goldberger
and Wise [[[J] added a bulk scalar field to fix the location of the branes in five dimensions,
investigations with bulk fields became an active area of research. It has been shown that
the graviton [ff] and the massless scalar field have normalizable zero modes on branes of
different types, that the Abelian vector fields are not localized in the Randall-Sundrum (RS)
model in five dimensions but can be localized in some higher-dimensional generalizations
of it [[Z. In contrast, in [R{, R1] it was shown that fermions do not have normalizable zero
modes in five dimensions, while in [[[J] the same result was derived for a compactification
on a string [T in six dimensions. Subsequently, Randjbar-Daemi et al studied localization
of bulk fermions on a brane with inclusion of scalar backgrounds [P3] and minimal gauged
supergravity [Rd] in higher dimensions and gave the conditions under which localized chiral
fermions can be obtained.

Since spin half fields can not be localized on the brane [f}, [[J] in five or six dimen-
sions by gravitational interaction only, it becomes necessary to introduce additional non-
gravitational interactions to get spinor fields confined to the brane or string-like defect. The
aim of the present article is to study localization of bulk fermions on a string-like defect
with codimension 2 in U(1) gauge background. The solutions to Einstein’s equations in
two extra dimensions have been studied by many groups [J-[[1, P4, BJ]. In this article, we
first review the solutions with a warp factor in a general space-time dimension. Then, we
shall prove that spin 1/2 and 3/2 fields can be localized on a defect with the exponentially
decreasing warp factor if gauge and gravitational backgrounds are considered.

2. A string-like defect

Let us start with a brief review of a string-like defect solution to Einstein’s equations with
sources. We consider Einstein’s equations with a bulk cosmological constant A and an
energy-momentum tensor Th;n in general D dimensions:

1
Run — ggMNR = —Agun + £5TunN, (2.1)

where kp denotes the D-dimensional gravitational constant with a relation I{QD =8rGpN =
87/MP~2 Gy and M, being the D-dimensional Newton constant and the D-dimensional
Planck mass scale, respectively, the energy-momentum tensor is defined as

2 ) D
Throughout this article we follow the standard conventions and notations of the textbook
of Misner, Thorne and Wheeler [R§].
We shall consider D = (D; + Dy + 1)-dimensional manifolds with the geometry
ds® = gMNddexN

= e g, (x)dz"dz” + e~ B0 Gop (y)dy dy® + dr?, (2.3)



where M, N denote D-dimensional space-time indices, u,v = 0,1,..., D1 — 1, a,b =
1,..., Dy, and the coordinates y® cover an internal manifold K with the metric gus(y).
Moreover, we shall adopt the ansatz for the energy-momentum tensor respecting the spher-

ical symmetry:
ThH =60ti(r), Ty = opta(r), T, =ts(r), (2.4)

where t;(i = 1,2,3) are functions of only the radial coordinate r.
Under these ansatzs, Einstein’s equations (B.1) and the conservation law for energy-
momentum tensor VM Ty, n = 0 reduce to

R | 1
"R+ ePR— 7 D1(D1 - 1)(A)? - ;1 D2(D2 1)(B')?
1
—§D1D2A’B’ —2A +2k%5t3 =0, (2.5)
AD Dy —2 B 5 " n 1 I !
e"R+ T e"R+ DA +(D2 — 1)B — §D1(D2 — 1)AB
2

1 1
—D1(Dy + 1)(A")? - 1 D2(Ds + D(B)? —2A + 255ty = 0,  (2.6)

Dy -2 4. 1
PR+ IT ¢ R+ DyB" + (D — 1)A” — §D2(D1 -HA'B
1

1 1
—1D1(D1 + 1)(A)? — Z1)2(1)2 +1)(B)? —2A +2kHt, =0,  (2.7)

1 1
ty = §D1A,(t3 —t1) + §D2B/(t3 —t2), (2:8)

where R and R are the scalar curvatures associated with the metric 9w and ggp, respectively,
and the prime denotes the derivative with respect to r. Here we define the cosmological
constant A on the (D; — 1)-brane by the equation

~

1. 4 A
R, — 59“,,]% = —Agu- (2.9)

It is now known that there are many interesting solutions to these equations (see, for
instance, [R4]). Here, we shall confine ourselves to the brane solutions with a warp factor

A(r) =cr, (2.10)

where c is a constant.
If K is taken as a D-torus, then we have R = 0, and the general solutions with the
warp factor (R.10) can be found as follows:

ds® = ™" g, datda” + dr? + RE ¢ B 5,;d0"de7, (2.11)
where
B(r) = cer+ Dilcﬁ% /T dr(ts — ta2), (2.12)
2 = m(—&x +8k2a), (2.13)
R = D21D_12[\ = —2k%0. (2.14)



Here t9 takes the following form
to = a + fe, (2.15)

with o and 3 being some constants. Moreover, in order to guarantee the positivity of ¢?,
« should satisfy an inequality —8A + 8x%,a > 0.
If K is taken as a unit Ds-sphere, then we have

dQ, = Ja(y)dy"dy’
Dy—1
= df? + sin® 01d03 + sin® 0; sin® OodB3 + - - - + H sin® 0;d07, . (2.16)

i=1

In the case of Dy = 1, we have R = 0 and the solutions are the same as those of (2.11) [[J].
For Dy > 2 the solution with the warp factor (2.10) is of the form [[J]

ds* = e™" g, datda” + dr® + R3dQ3,,, (2.17)
where
—8A
2
¢ = , 2.18
Dy (Dl + Dy — 1) ( )
. 2D -
R = A=0 2.19
ZPi-o, (219)

here the sources satisfy the relations, t3 + Doty — (Dy — 1)t; = 0 and t3 = t; = constant,
which are nothing but the relations satisfied in the spontaneous symmetry breakdown [24].

It is useful to consider a special case of the above general solutions (R-I1)) with Dy =
1. A specific solution occurs when we have the spontaneous symmetry breakdown t3 =

—t2 [@]

ds* = e " g, datdz” + dr* + R§ e~ " d6?, (2.20)
where

= ;(—SA + 8khts) > 0, (2.21)

Dl(Dl + 1)

8 2
=c— —HKpt 2.22
c1=c chnD 2, ( )
A 2D1 ~

R= A=o. 2.23
Dy 2 (2.23)

This special solution would be utilized to analyse localization of fermionic fields on a string-
like defect in the next section.

3. Localization of fermions

In this section, for clarity we shall limit our attention to a specific string-like solution (R.2()
as well as D = 6 since the generalization to the general solutions (R.11]) is straightforward.



In this paper, we have the physical setup in mind such that “local cosmic string” sits at the
origin r = 0 and then ask the question of whether various bulk fermions with spin 1/2 and
3/2 can be localized on the brane with the exponentially decreasing warp factor by means of
the gravitational interaction and gauge background. Of course, we have implicitly assumed
that various bulk fields considered below make little contribution to the bulk energy so that
the solution (P.2() remains valid even in the presence of bulk fields.

3.1 Spin 1/2 fermionic field

In this subsection we study localization of a spin 1/2 fermionic field in gravity (B-20) and
gauge backgrounds. It will be shown that provided that the gauge field A, satisfies certain
condition, there is a localized zero mode on the string-like defect.

Let us consider the Dirac action of a massless spin 1/2 fermion coupled to gravity and
gauge field:

&n:/ﬁDmﬁgwwMDMm, (3.1)
from which the equation of motion is given by
PM(BM +wy — z'eAM)\IJ =0, (3.2)

where wyr = %w%NFMFN is the spin connection with M, N, --- denoting the local Lorentz
indices, I'M and '™ are the curved gamma matrices and the flat gamma ones, respectively,
and Ay is a U(1) gauge field. The RS model is the special case with Dy = 0 and Ay; = 0.
From the formula '™ = e%I’M with e% being the vielbein, we have the relations:

TF = e3¢l T7 = 6217, T = Ry'lez7601?. (3.3)

The spin connection w%N in the covariant derivative Dy W = (Opr+ iw%NI’MI’N —ieAp )W
is defined as

av 1w v o w1 NF v 1 1 pir oF ;
Wi — §eNM(8Me%—8]vef\v4)—ieNN(8M61]‘V4—8Ne%)—iePMeQN(apeQR—aQePR)eﬁ. (3.4)
So the non-vanishing components of wj; are

1

1
wp — chl“rl“g, (3.6)
where w,, = %wﬁpfﬂff, is the spin connection derived from the metric QW(JU) = éﬁéZnﬂl—,.
Assume A, = A, (z) and A, 9 = A, ¢(r). The Dirac equation (B.9) then becomes
T 1 . ,
{e%”éZI‘“DM +1I" <8r —c— o zeAr(r)> + 199y — zeAg(r))} U =0, (3.7)
where égfﬂf)u = Agfﬂ(au +w, —ieA,) is the Dirac operator on the brane in the back-

ground of the gauge field A,. We are now ready to study the above Dirac equation for



6-dimensional fluctuations, and write it in terms of 4-dimensional effective fields. Since ¥
is a 6-dimensional Weyl spinor we can represent it by

U= (‘I’s)) , (3.8)

where U™ is a 4-dimensional Dirac spinor. Our choice for the 6-dimensional constant
gamma matrices '™ M =0,1,2,3,7,0 are

) i ) 5 ] i
L B D 05 N o= (07 (3.9)
¥ 0 7> 0 1 0

where the 7 are the 4-dimensional constant gamma matrices and 7° the 4-dimensional
chirality matrix. Imposing the chirality condition 4°¥*) = +¥® the Dirac equation B
can be written as

. 1
{e;créﬁh“Du + (& —e— o ieAr(r)> + iRale%clr(ﬁg - ieAg(r))} @ = 0. (3.10)
Now, form the equation of motion (B.1(), we will search for the solutions of the form
VW (@, 7,0) = P(x)a(r) Y e, (3.11)

where ¢ (x) satisfies the massless 4-dimensional Dirac equation égwﬂ]jﬂib = 0. For s-wave
solution, eq. (B.1() is reduced to

1
<8r —e—ga - ieA,(r) + eRale%C”Ag(r)> a(r) =0. (3.12)
The solution of this equation is given by

a(r) o exp {cr + iclr + ie/ drA(r) — eRol/ dr G;CITAQ(T)} . (3.13)

So the fermionic zero mode reads
(0 1 . " 1 " 1
U« 0 ) Py + 267 +ie | drA.(r)—eR; dr e21"Ap(r) ¢ . (3.14)

Now we wish to show that this zero mode is localized on the defect sitting around the
origin r = 0 under certain conditions. The condition for having localized 4-dimensional
fermionic field is that «(r) is normalizable. It is of importance to notice that normalizability
of the ground state wave function is equivalent to the condition that the “coupling” constant
is nonvanishing.

Substituting the zero mode (B.14) into the Dirac action (B.])), the effective Lagrangian
for 1 then becomes

Lo = / drdfy/—gWiTM Dy, v

= L)y /=g Vit D0, (3.15)



where

oo 1 T
Iy o / dr exp <§cr — QeRo_l/ dr eéc”Ag(r)> , (3.16)
0

In order to localize spin 1/2 fermion in this framework, the integral (B.16) should be finite.
When the gauge background vanishes, this integral is obviously divergent for ¢ > 0 while
it is finite for ¢ < 0. This situation is the same as in the case of the domain wall in the RS
framework [R0] where for localization of spin 1/2 field additional localization method by
Jackiw and Rebbi [R7] was introduced. Now let us look for the condition for localization
of spin 1/2 field. Obviously, the A, gauge field doesn’t contribute to the integral (B.14).
The requirement that the integral (B.16) should be finite is easily satisfied. For example, a
simple choice is

Ag(r) = Ae 27, (3.17)
where A is a constant satisfying the condition
A>—R (3.18)
46 0- .
Another choice can be taken as the following form
Ag(r) = e z0Tp" (3.19)
with n > 1, or the more special and interesting form

Ag(r) = (4—CeRo + r") e 2017 (3.20)

with n > 0. So spin 1/2 field is localized on a defect with the exponentially decreasing

warp factor under condition (B.17) or (3.19) or (B.20). Of course, there are many other

choices which result in finite Iy /5.

3.2 Spin 3/2 fermionic field

Next we turn to spin 3/2 field, in other words, the gravitino. Let us start by considering
the action of the Rarita-Schwinger gravitino field:

S = /dDm\/—g\T/MiP[MPNPR]DN\IIR, (3.21)

where the square bracket denotes the anti-symmetrization, and the covariant derivative is
defined with the affine connection I'{, , = e%(@Me]\N/[ + wiVen ) by

Dy :8MWN—PﬁNWR+wMWN—i6AMq/N. (3.22)

From the action (B.21)), the equations of motion for the Rarita-Schwinger gravitino field
are given by

TIMPNTEI DN R = 0. (3.23)



For simplicity, from now on we limit ourselves to the flat brane geometry g,,, = 7,..
After taking the gauge condition ¥, = Wy = 0, the non-vanishing components of the
covariant derivative are calculated as follows:

1

DV, = 9,0, + 70, T, 0, — icA, 0, (3.24)

1

DU, = 3c¥,, (3.25)
1

DyWy = 0,0, + 500, —ieA, U, (3.26)
1 .

DQ\IIM = 8.9\I/M + chl“rl“gwu — ZeA,g\I/M. (3.27)

Again we assume A, = A,(z) and A, 9 = A, ¢(r), and represent ¥, as the following form

(4)
v
v, = < 6‘ ) ) (3.28)

where \Il,(f) is the 4D Rarita-Schwinger gravitino field.
Imposing the chirality condition 75\11,&4) = +W£4), and substituting eqs. (B.24)-(B.2§)
into the equations of motion (B.23), we will look for the solutions of the form

\11(4) (x,r,0) Zezw (3.29)
where 1), (z) satisfies the following 4-dimensional equations "1, = o1, = Aleryel(9, —
ieA, )1, = 0. Then the equations of motion (B.23) reduce to

1 1
(0 = o= ger = e, 1)+ ey 3T Ao) ) utr) = (3.30)

form which u(r) is easily solved to be

1 1 s T
u(r) oc exp {507“ + 267 + ie/ drA.(r) —eRy" / dr G%CITAQ(T)} . (3.31)

In the above we have considered the s-wave solution.
Let us substitute the zero mode (B.31)) into the Rarita-Schwinger action (B.21). It

turns out that the effective Lagrangian becomes
Log = / drdf/=gU  iTMTNTEI D0

= Iy Yuiyy "l 0y — ieA, ). (3.32)

where the integral I35 is defined as

oo 1 T
I3y o / dr exp <§CT - eRo_l/ dr eéc”Ag(r)> . (3.33)
0

In order to localize spin 3/2 fermion, the integral I3/, must be finite. But this expression is
equivalent to I /o up to an overall constant factor so we encounter the same result as in spin
1/2 field. This shows that the solution ([8.31]) is normalizable under the condition (B.17)
or (B.19) or (B.20) for not only the exponentially increasing but also the exponentially
decreasing warp factor.



4. Discussions

In this paper, we have investigated the possibility of localizing the spin 1/2 and 3/2
fermionic fields on a brane with the exponentially decreasing warp factor, which also local-
izes the graviton. We first give a brief review of a string-like defect solution to Einstein’s
equations with sources, then check localization of fermionic fields on such a string-like de-
fect with the background of gauge field from the viewpoint of field theory. We find that
there is a same solution for subspace K = Ds-torus with any Dy and K = Dy-sphere
with Do > 2. It has been found that spin 1/2 and 3/2 fields can be localized on a defect
with the exponentially decreasing warp factor if gauge and gravitational backgrounds are
considered.

Localizing the fermionic degrees of freedom on the brane or the defect requires us to
introduce other interactions but gravity. Recently, Parameswaran et al study fluctuations
about axisymmetric warped brane solutions in 6-Dimensional minimal gauged supergravity
and proved that, not only gravity, but Standard Model fields could “feel” the extent of
large extra dimensions, and still be described by an effective 4-Dimensional theory [R3].
Moreover, there are some other backgrounds could be considered besides gauge field and
supergravity [2§], for example, vortex background [R9]. The topological vortex (especially
Abrikosov-Nielsen-Olesen vortex) coupled to fermions may lead to chiral fermionic zero
modes [B(]. Usually the number of the zero modes coincides with the topological number,
that is, with the magnetic flux of the vortex. In future, we wish to extend the present work
to the Abelian Higgs model.
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